## BCRX7\_1M マイコン開発セット マニュアル

第2版 2020.12.17/2016.8.30 E2 liteの使用を追加

### 【 製品概要 】

本マニュアルはBCRX7\_1M CPUボードのソフトウエア開発を行うために必要なソフトウエア インストゥール手順、添付CDのサンプルプログラムの動作について解説されています。特に新しい統合 開発環境CS+ for CCにおける開発方法について多く記述してあります。「コード生成」機能でR L78のように簡単に、FPU内蔵で驚異の演算速度をご体験下さい。

※本CPUボード開発にはルネサスエレクトロニクス社製E1またはE2 liteが必要です。



#### 1. 開発環境、事前準備

- 1-1. 開発環境
  - a:開発セット 同梱物
  - b:BCRX7\_1M CPUボードの特徴
  - c: E1エミュレータ (デバッカ)
  - d:無償のCS+、RX用Cコンパイラのダウンロード
  - e: CDコピー、デバイスドライバのインストゥール
- 1-2 動作、デバック
  - a:CS+起動、コンパイル、書き込み、動作
  - b:新しいプログラムを作る CS+ 操作
    - b-1:初めにIOポートの設定
      - b-2: プログラムの書き込み、書く場所の注意
      - b-3:デバッカの設定がデフォルトはエミュレータなので注意
      - b-4:E1から電源供給
    - b-5:クロック発生回路を設定する必要があります
  - c:その他
    - c-1:動作中に変数の変化を見るには?
    - c-2:サンプルを走らせるときにvect.hの重複するアドレスを削除
    - c-3:三角関数math.hはインクルードもCS+の設定も必要
    - c-4:割り込みが入っているか?周期は?簡単なチェック方法
    - c-5:既存のプログラムを雛形として新しいプログラムを作る
    - c-6:コード生成と見落としがちな注意点

# 2. サンプルプログラム

- 2-1. sample1 出力ポートのON, OFF
- 2-2. sample2 SIO (USB) でパソコンとのやりとり
- 2-3. sample3 A∕D変換をUSB出力
- 2-4. sample4 割り込み
- 2-5. sample5 PWM出力
- 2-6. sample6 三角、対数、平方根関数を使う
- 2-7. sample7 D/Aにsin演算した正弦波を出力する

### 1-1. 開発環境

#### a:開発セット同梱物

BCRX7\_1M CPUボード SIO-USB絶縁変換器 DVD(サンプルプログラム、デバイスドライバ、ドキュメント) マニュアル(本誌) 電源ケーブル、USB(フルサイズ)ケーブル ※開発に必要ないませるエレクトロニクス社創デバッカ51または

※開発に必要なルネサスエレクトロニクス社製デバッカE1またはE2 Iiteは同封されておりません。別途必要です。E1は2019年末に製造中止となりました。



b : BCRX7\_1M CPUボードの特徴(R5F571MLCDFP 100ピン搭 載)

●ルネサス独自のRX CPUコア、内部32ビットデータバス幅マイクロコンピュータ。3.3V 2 40MHz動作可能。従来のRX製品に搭載されたコアとの互換性を踏襲しながらも更に強力に進化した RXv2コアを採用し、フラッシュ内蔵マイコンとして最高クラスとなる1044coremarkを実 現。フラッシュメモリ向けに最適化したキャッシュ(AFU)により240MHzノーウェイト相当のフ ラッシュメモリアクセスが可能。

●FPU 単精度浮動小数点数(32ビット)IEEE754に準拠したデータタイプ、および例外

●メモリ容量 内蔵フラッシュROM 4Mバイト、内蔵RAM512Kバイト 内蔵データフラッシュ 64Kバイト

●A/Dコンバータ : 12ビット分解能×22 変換速度0.48μsec/1ch(ADCLK=6 0MHz)

●D/Aコンバータ:12ビット分解能×1

●外部バス拡張機能:あり(外部にデータバス、アドレスバス等出力できます)

● I /Oポート:入出力:78、入力:1、プルアップ抵抗:78 オープンドレイン出力:78 5V トレラント:17

●タイマ:16ビットタイマパルスユニット(TPUa)(16ビット×6チャンネル)、ポートアウトプ ットイネーブル3(POE3a)、汎用PWMタイマ(GPTa)(16ビット×4チャンネル)、プログラ マブルパルスジェネレータ(PPG)、8ビットタイマ(TMRb)(8ビット×2チャンネル)×2ユニ ット、コンペアマッチタイマ(CMT)(16ビット×2)×2ユニット、コンペアマッチタイマW(CM TW)(32ビット×1チャンネル)×2ユニット、リアルタイムクロック(RTCd)、ウオッチドッグ タイマ(WDTA)、独立ウオッチドグタイマ(IWDTAa)

●イーサネットコントローラ(ETHERC)2チャンネル、USB2. 0FSホスト/ファンクション モジュール(USBb)1ポート、シリアルコミュニュケーションインターフェイス(SCIg、SCI h)9チャンネル、FIFO内蔵シリアルコミュニュケーションインターフェイス(SCIFA)4チャ ンネル、IICバスインターフェイス(RIICa)2チャンネル、CANモジュール(CAN)3チャ ンネル、シリアルペリフェラルインターフェイス(RSPIa)2チャンネル、クワッドシリアルペリフ ェラルインターフェイス(QSPI)1チャンネル

●シリアルサウンドインターフェイス(SSI)2チャンネル、サンプリングレートコンバータ(SRC)、 MMCホストインターフェイス(MMCIF)、パラレルデータキャプチャユニット(PDC)、温度セン サ等内蔵。

●オンチップデバッキングシステム:(FINEインターフェイス)

●動作周囲温度:-40~+85℃

●EEPROM: 25LC256(32Kバイト) 電源OFFでもデータ保持。 ※オプション(実 装品はご相談下さい)

●電源 2.7V~3.6V 単一 40mA(240MHz動作 TYPE)

E1デバッカを使用して動作させる時E1から3.3Vの電源を供給できます。 デバック時など200mA以内の使用であれば他に用意する必要はありません。

●クリスタル:メイン 12MHz(×4逓倍で50MHz作成)実装済み。

●デバックコネクタ:E1用(FINEインターフェイス)デバックコネクタ実装済み。

- ●基板サイズ 64×48×13(H)mm
- ●基板仕上げ 金メッキ RoHS指令準拠 基板、部品、半田付け全ての工程でRoHS指令準拠仕様。

## 基板大きさ(部品面)



# 省略

# 1-2 動作、デバック

## a:CS+ for CC 起動、コンパイル、書き込み、動作



CDに添付しているサンプルプログラムを使って、コンパイル、書き込み、動作の方法を示します。

CS+ for CCを起動します。ここでは例としてRX7\_1Asample¥sample1を動作させます。基板上のLED D1が点滅するプログラムです。

ファイル → ファイルを開く → sample1. mtpjをダブルクリックします。

(2) ファイルを開く

| — → × ↑ 📜 « Wa | orkSpace > RX71M_sample > sample1 > | ٽ ~              | sample1の検索        | م        |
|----------------|-------------------------------------|------------------|-------------------|----------|
| 整理▼ 新しいフォルダー   |                                     |                  | ∎==<br>= <b>▼</b> |          |
| 🚡 デスクトップ 🖈 🛆   | 名前                                  | 更新日時             | 種類                | サイズ      |
| 🗎 ドキュメント 🖈     | cg_src                              | 2016/04/20 17:03 | ファイル フォルダー        |          |
| 🤽 ダウンロード 🕺 🗉   | DefaultBuild                        | 2016/04/19 17:34 | ファイル フォルダー        |          |
| 🍋 ピクチャ 🛛 🖈     | Sample1.mtpj                        | 2016/04/20 17:03 | MTPJ ファイル         | 17,427 K |

プロジェクトツリーが表示されます。

| E1は設定済みです。                                                                                                                                                                                                          |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 🔯 sample1 - RX E1(Serial) - (                                                                                                                                                                                       | S+ for CC -      |
| ファイル(F) 編集(E) 表示(V) フ                                                                                                                                                                                               | ロジェクト(P)         |
| 🚳 スタート(S) 🔒 🗐 🗿                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                     |                  |
| プロジェクト・ツリー                                                                                                                                                                                                          | ąχ               |
| ĝ 🕜 🙎  🗃                                                                                                                                                                                                            |                  |
| ■ R5F571MLCxFP (マイク)<br>■ コード生成(設計ツール)<br>● CC-RX (ビルド・ツール)<br>● RX E1(Serial) (デバッグ<br>■ コード生成<br>■ コード生成<br>■ コード生成<br>■ コード生成<br>■ コード生成<br>■ 「」cgdbsct.c<br>■ 「」cgrcg_tbrc.c<br>■ 「」cgsbrk.c<br>■ 「」cgvecttbl.c | -םארכםי<br>יש-גע |

-

もし、E2liteを使う場合は、右クリックで→使用するデバックツール→E2 liteを選択しま す。



通信方式はJTAGになってしまうので、FINEに切り替えて下さい。

sample1. cが中央に表示されます。とりあえず、実行してみます。E1のケーブルを基板のCN 1に挿入します。電源はE1から供給しますので、不要です。(写真ご参考)



「デバック・ツールヘプログラムを転送」をクリック。



上手く転送できると、今まで表示されていなかったプログラムの絶対番地が表示されます。E1から電源 がCPU基板に供給されます。



ここまでいかなかった場合、E1のデバイスドライバインストゥールをご検証願います。

次に、プログラムを動作させます。「CPUリセット後、プログラムを実行」をクリック。

|                                                                                                                      | CPUリセット後、プログラムを実行します。                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E1のRUN(糸<br>されます。                                                                                                    | 录LED)が点灯し、基板のD1が点滅したら動作しています。CS+の右下部にも表示                                                                                                                                                                                                                                                                                         |
| ■RUN                                                                                                                 | 実行中 ■RX E1(Serial) ⑦計測中                                                                                                                                                                                                                                                                                                          |
| ここまで確認でき                                                                                                             | きましたら、一度止めます。                                                                                                                                                                                                                                                                                                                    |
| へルプ(H)                                                                                                               |                                                                                                                                                                                                                                                                                                                                  |
| , 🖓 🗅 m 🤇                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      | 実行中のプログラムを停止します。 (Shift+F5)                                                                                                                                                                                                                                                                                                      |
| main関数の                                                                                                              | lwaitの数値2箇所を1桁0を増やしてみます。                                                                                                                                                                                                                                                                                                         |
| ffc005f7<br>ffc005fe                                                                                                 | PORTF.PODR.BYTE = 0x55;<br>PORTJ.PODR.BYTE = 0x55;                                                                                                                                                                                                                                                                               |
| ffc00605                                                                                                             | main_wait(5000000);                                                                                                                                                                                                                                                                                                              |
| ffc0060d<br>ffc0060f<br>ffc00611<br>ffc00613<br>ffc00615<br>ffc00617                                                 | PORTO.PODR.BYTE = 0×aa;<br>PORT1.PODR.BYTE = 0×aa;<br>PORT2.PODR.BYTE = 0×aa;<br>PORT3.PODR.BYTE = 0×aa;<br>PORT4.PODR.BYTE = 0×aa;<br>PORT5.PODR.BYTE = 0×aa;                                                                                                                                                                   |
| ffc00619<br>ffc00620<br>ffc00627<br>ffc00635<br>ffc00635<br>ffc00643<br>ffc00643<br>ffc00651<br>ffc00658<br>ffc0065f | PORT6.PODR.BYTE = 0xaa;<br>PORT7.PODR.BYTE = 0xaa;<br>PORT8.PODR.BYTE = 0xaa;<br>PORT9.PODR.BYTE = 0xaa;<br>PORTA.PODR.BYTE = 0xaa;<br>PORTB.PODR.BYTE = 0xaa;<br>PORTC.PODR.BYTE = 0xaa;<br>PORTD.PODR.BYTE = 0xaa;<br>PORTE.PODR.BYTE = 0xaa;<br>PORTF.PODR.BYTE = 0xaa;<br>PORTF.PODR.BYTE = 0xaa;<br>PORTJ.PODR.BYTE = 0xaa; |

main\_wait(5000000);

\*

ffc00666

1

8

セーブして

| E) 表 | 表示(V) | プロジェ         | クト(P) | ビルド(B  | ) デバッ             | ッグ(D)   | ツー  |
|------|-------|--------------|-------|--------|-------------------|---------|-----|
| 1    |       | <b>x b b</b> | 50    | aa 🙇 🙈 |                   | -       | 10  |
|      | ファイ   | ルに指定         | された項  | 目を保存   | <sub>ノ</sub> ます。  | (Ctrl+S | 5)  |
| 「ビノ  | ルド後、  | デバック         | ・ツール  | へプログラ  | ir main.c<br>ムを転送 | * 127 J | リハナ |



「CPUリセット後、プログラムを実行」をクリック。 LEDの点滅が先ほどより、遅くなったのが目視できましたでしょうか?

次に、ブレークポイントの設定を行ってみます。一度、プログラムを停止させます。 ブレークポイントを2点設定しました。手のマークの部分をマウスでダブルクリック。

| 99  | ffc00606 | 138  | main_wait(5000000);                   |   |
|-----|----------|------|---------------------------------------|---|
| 100 |          |      |                                       | - |
| 101 |          |      |                                       | , |
| 102 | ffc0060e | 1    | PORTO.PODR.BYTE = 0xaa;               |   |
| 103 | ffc00610 | 1    | PORT1.PODR.BYTE = 0xaa:               |   |
| 104 | ffc00612 | 1    | PORT2.PODR.BYTE = 0xaa:               |   |
| 105 | ffc00614 | i    | PORT3.PODR.BYTE = 0xaa:               |   |
| 106 | ffc00616 | i    | PORT4, PODR, BYTE = 0xaa:             |   |
| 107 | ffc00618 | 1    | PORT5, PODR, BYTE = 0xaa:             |   |
| 108 |          |      |                                       |   |
| 109 | ffc0061a | 1    | PORT6 PODR BYTE = Oxaa:               |   |
| 110 | ffc00621 | - i  | PORTZ PODR BYTE = Oxaa:               |   |
| 111 | ffc00628 |      | PORTS PODR BYTE = Oxaa:               |   |
| 112 | ffc0062f |      | PORTS PODR BYTE = Oxaa:               |   |
| 113 | ffc00636 |      | PORTA PODR BYTE = Oxaa:               |   |
| 114 | ffc0063d |      | PORTE PODE BYTE = Oxaa:               |   |
| 115 | ffc00644 |      | PORTC PODR BYTE = Oxaa:               |   |
| 116 | ffc0064b |      | PORTD PODR BYTE = Oxaa:               |   |
| 117 | ffc00652 |      | PORTE PODR BYTE = Oxaa;               |   |
| 118 | ffc00659 |      | PORTE PODR BYTE = Ovaa:               |   |
| 110 | ffc00660 |      | PORT L PODR BYTE = 0xaa;              |   |
| 120 | 1100000  |      | / / / / / / / / / / / / / / / / / / / | / |
| 121 | ffc00668 | 1.00 | main wait(50000000)                   |   |
| 121 | 11000000 | 0    | mail: mail: (00000000),               |   |

「CPUリセット後、プログラムを実行」します。

|     | PORT8.PODR.BYTE = 0x55;<br>PORT9.PODR.BYTE = 0x55;<br>PORTA.PODR.BYTE = 0x55;<br>PORTB.PODR.BYTE = 0x55;<br>PORTC.PODR.BYTE = 0x55;<br>PORTD.PODR.BYTE = 0x55;<br>PORTE.PODR.BYTE = 0x55;<br>PORTF.PODR.BYTE = 0x55;<br>PORTJ.PODR.BYTE = 0x55; | • |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 178 | main_wait(5000000);                                                                                                                                                                                                                             |   |

プログラムの実行はブレークポイントで停止し、LED D1 は PORTD. PODR. BYTE= 0×55;命令によりPD0=1となるので、点灯します。

更に「プログラムを現在の位置から実行」をクリックすると、もう一つのブレークポイントで停止し、P ORTD. PODR. BYTE=0xaa;命令実行によりPD0=0になり、LEDは消灯します。



以上が、プログラムのコンパイル、E1へのダウンロード、実行、修正、ブレークポイント設定、動作の 概要です。

# **b**:新しいプログラムを作る

省略

## **b**-1:初めに I O ポートの設定

ここが従来のRXマイコン開発と変わった部分になります。コード生成ツールが完備してIO設定に限らず、あらゆるペリフェラルの初期設定をプログラムレスで開発できるようになりました(2016.9)。 RL78のCS+開発と同じように行えます。

ここではPORTCのPCOを出力設定します。コード生成(設計ルーツ)→ 周辺機能 → I / Oポー トを選択。PORTCのPCOを出力にチェック。

 $\backslash \setminus$ 

| 🔮 test_sample - CS+ for CC - [周辺機能                  |                        |                        |                                     |                  |                  |
|-----------------------------------------------------|------------------------|------------------------|-------------------------------------|------------------|------------------|
| ファイル(F) 編集(E) 表示(V) プロジェクト(F                        | P) ビルド(B) デバッグ(D) ツール  | L(T) DAYF              | ウ(W) ヘルプ(H)                         |                  |                  |
| 🏽 🙉 スタート(S)   🛃 🗐 🗿 🖁 🕷 🛍                           | ♥ ♥ ■ ■                |                        | 🔍 👻 😽 😽 DefaultBuild                | • 🕺              | i 🚮 🕰 🤭 i 📵 🕑 🖸  |
|                                                     |                        |                        |                                     |                  |                  |
| プロジェクト・ツリー + ×                                      | 🚰 プロパティ 💯 周辺機能*        |                        |                                     |                  |                  |
| 2 🕼 🚨 🛛                                             | 1 コードを生成する 👗           | A K <sup>m</sup> (1)   | a z z z n n n n n                   | 3 <u>6 6</u> 6 - | 1 <i>2277</i> #7 |
| ■ test_sample (プロジェクト)* ^                           |                        |                        |                                     |                  |                  |
| - R5F571MLCxFP (マイクロコント                             | Port0 Port1 Port2 Port | B Port4   F            | Ports   PortA   PortB   PortC   Por | tD   PortE   Por | tJ               |
| □- 1型 コード生成 (設計ツール)<br>■ 2→ 端子図                     | ○ 使用しない ○ 入力           | ● 出力                   | □ 内蔵プルアップ CMOS 出力                   | ~                | 1を出力 高駆動出力       |
| 日-222 周辺機能                                          | -PC1<br>④ 使用しない 〇 入力   | 〇 出力                   | <ul> <li>内蔵ゴルアップ CMOS 出力</li> </ul> | × 🗆              | 1を出力 高駆動出力       |
| <ul> <li>■ 電圧検出回路</li> <li>■ クロック周波数精度測定</li> </ul> | -PC2<br>● 使用しない 〇 入力   | 〇出力                    | □ 内蔵ブルアップ CMOS 出力                   | × .              | 1を出力 高駆動出力       |
|                                                     | -PC3<br>● 使用しない 〇 入力   | 〇出力                    | <ul> <li>内蔵ブルアップ CMOS 出力</li> </ul> | ×                | 1を出力 高駆動出力       |
|                                                     | -PC4                   | 〇出力                    | <ul> <li>内蔵ブルアップ CMOS 出力</li> </ul> |                  | 1を出力 高駆動出力       |
|                                                     | -PC5<br>● 使用しない 〇 入力   | 〇出力                    | □ 内蔵ブルアップ CMOS 出力                   |                  | 1を出力 高駆動出力       |
| ■ <u>いのハート</u><br>■ ■ マルチファンクションタイマノ                | -PC6<br>● 使用しない 〇 入力   | <ul><li>○ 出力</li></ul> | 回 内蔵ゴルアップ CMOS 出力                   |                  | 1を出力□ 高販勧出力      |
| ● ● 汎用PWMタイマ                                        | -PC7                   | 0 414                  |                                     |                  |                  |
|                                                     | ● 使用しない ● 人力           | 〇 出力                   | 〇 内蔵フルアップ CMOS 出力                   | × _              | 1を出力 高駆動出力       |

これでコードを生成するをクリックするとPORTCのPCOを出力に設定する初期化プログラムが自動 生成されます。

# b-2:プログラムの書き込み、書く場所の注意

省略

## b-3:デバッカの設定がデフォルトはエミュレータなので注意





E1からの電源供給が遮断されている状態で「使用するデバック・ツール」→ RX E1を選択して下 さい。

# b-4:E1から電源供給

省略

綺麗にLEDが点滅できたと思います。しかし、sample1と比べると遅い。実はまだ設定が十分で はありません。

b-5:クロック発生回路を設定する必要があります

省略

これでCPUはやっと240MHzで動作し、sample1とほぼ同じ間隔でLEDが点滅するのが確認できます。

c:その他

c-1:動作中に変数の変化を見るには?

省略

#### c-2:サンプルを走らせるときにvect. hの重複するアドレスを削除

ルネサス等から提供されているライブラリを自分で新規に製作したプロジェクトで走らそうとするときに、 vect. hの内容が重複定義となり、エラーが出る場合があります。vect. hの中の定義を削除し て下さい。

```
以下、RX2_1Aのsample3.cの中で定義されている割込み。
```

```
* Function Name: dsadi0 isr
* Description : DSAD channel0 interrupt rutine
* Arguments
           : none
* Return Value : none
*****
#pragma interrupt dsadi0_isr(vect = VECT(DSAD, DSADI0))
static void dsadi0_isr(void)
{
   /* Read conversion data of DSAD channel0
   DSADDR0
              Delta-Sigma Data Register 0
   b31-b0
            Holding A/D results. Read only register. */
   g_dsad_data[0] = (int32_t)DSAD.DSADDR0;
   /* Clear Interrupt Request Register assigned DSADI0. */
```

```
IR(DSAD, DSADI0) = 0;
```

}

vect. hの中をコメントにしないと2重定義でエラーがでます。

```
/*
```

```
// DSAD DSADI0
```

```
#pragma interrupt (Excep_DSAD_DSADI0(vect=207))
void Excep_DSAD_DSADI0(void);
```

// DSAD DSADI1
#pragma interrupt (Excep\_DSAD\_DSADI1(vect=208))
void Excep\_DSAD\_DSADI1(void);

// DSAD DSADI2
#pragma interrupt (Excep DSAD DSADI2(vect=209))

### void Excep\_DSAD\_DSADI2(void);

#### // DSAD DSADI3

#pragma interrupt (Excep\_DSAD\_DSADI3(vect=210))
void Excep\_DSAD\_DSADI3(void);

#### // DSAD DSADI4

#pragma interrupt (Excep\_DSAD\_DSADI4(vect=211))
void Excep\_DSAD\_DSADI4(void);

#### // DSAD DSADI5

#pragma interrupt (Excep\_DSAD\_DSADI5(vect=212))
void Excep\_DSAD\_DSADI5(void);

### // DSAD DSADI6

#pragma interrupt (Excep\_DSAD\_DSADI6(vect=213))
void Excep\_DSAD\_DSADI6(void);
\*/

# c-3:三角関数math.hはインクルードもCS+の設定も必要

sample6は三角、対数、平方根関数を使用しますが、ソースファイルにインクルードを記入するだけでなく、

#include <math.h>

//sqr 等演算を行うのに必要 math.h 有効と共にこの表記も必要。

| Sample6 (ノロジェクト)       | 4 E-F                                          |                                                                                  |
|------------------------|------------------------------------------------|----------------------------------------------------------------------------------|
| ■ R5F521A8BxFP (マイクロ   | 一 標準フィブフリの使用・構築方法                              | 標準フイブフリ・ファイル作成オブション変更時                                                           |
| へCC-RX (ビルド・ツール)       | ▲ 標準フ1フフリ<br>こ / ポニリ 押ま                        | e/eeeV i                                                                         |
| A RY E1(Serial) (デパッグ・ | フイフフリ 傍放<br>いい 堪勢対象 ホライブラリ                     | U(U89)(-lang=c)                                                                  |
|                        | / 悟奈内家のパイノア                                    | (±()(=head=\SubOption2)                                                          |
| 白 リファイル                | リノダイム・Jイノリリと相対にする<br>etyme b(OSD (ODD)を右対にする   | (alu)(=nead=runtime)                                                             |
| dbsct.c                | Ctype.n(Co3/C33)を有効にする<br>                     | (101%<br>(+()(_bd=))                                                             |
| e intora c             | math(1)(000/000)を方効にする                         | (a) (a) The automatic (a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c |
|                        | that 11:1(003/033/2有久)(293)                    | ()()2                                                                            |
| resetprg.c             | studaig1(0007007/21)<br>ctdia b(090/090)を右効にする | (t()(=headtetdia)                                                                |
| 🖆 sbrk.c               | stdlib h(C89/C99)を有効にする                        | (#(.)(=head=stdlih)                                                              |
| e vecttbl.c            | string b(CB9/C99)を有効(Cする                       | (#(.)(-head=string)                                                              |
| I iodofino h           | ins(EC++)を有効にする                                | ()()                                                                             |
| iddenne.n              | new(EC++)を有効にする                                | (\$(,)(-head=new)                                                                |
| - Sbrk.h               | complex(EC++)を有効にする                            | いいえ                                                                              |
| - 🔄 stacksct.h         | string(EC++)を有効にする                             | いいえ                                                                              |
| - Urvedefine.h         | オプジェクト                                         |                                                                                  |
| 6 week b               | 出力フォルダ                                         | %BuildModeName%                                                                  |
| vect.n                 | 出力ファイル名                                        | %ProjectName%.llb                                                                |
| sample6.c              | 機能縮小版入出力関数を生成する                                | いいえ                                                                              |
|                        | プログラム 領域のセクション 名                               | P                                                                                |
|                        | 定数領域のセクション名                                    | C                                                                                |
|                        | 初期化データ領域のセクション名                                | D                                                                                |
|                        | 未初期化データ領域のセクション名                               | B                                                                                |
|                        | リテラル 領域のセクション 名                                | L                                                                                |
|                        | switch 文分岐テーブル 領域のセクション 名                      | W                                                                                |
|                        | 初期値なし変数をアライメント4のセクションに配置する                     | いいえ                                                                              |
|                        | 初期値あり変数をアライメント4のセクションに配置する                     | いいえ                                                                              |
|                        |                                                | 1.0.17                                                                           |

CC-RX(ビルド・ツール) → ライブラリ・ジェネレート・オプション → math.hを有効にす る→はい としてください。

# c-4:割り込みが入っているか?周期は?簡単なチェック方法

sample4で1msec毎の定周期タイマー割り込みを使用しています。これがちゃんと割り込まれているか、周期、割り込み中の消費時間が分かる方法があります。8ビットタイマ→TMR0→10000  $\mu$  sec=1msec毎にCMIA0割り込みが入るように設定されています。

| 🞑 sample4 - RX E1(Serial) - CS+ for CC - [周辺機能]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|----------------------------------------------|
| ファイル(F) 編集(E) 表示(V) プロジェクト(P) ビルド(B) デバ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ッグ(D) ッ    | ソール(T) ウインドウ(W) ヘルプ(H)     |                                              |
| 🊳 スタート(S) 📴 🖬 🕼 🖄 🐚 🖄 🔍 🛱 🌉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88.<br>-   | 🕶 🛛 100% 📼 🖬 🚮 Defaul      | tBuild 🔹 🗸 🕴 🖏 🖎 🐂 I 💿 💿 🐂 🎯 I 🖘 🖓           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                              |
| プロジェクト・ツリー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>д х</b> | 「 逆アセンブル1 「 プロパティ 「 r cg t | mmr user.c 📝 r cg main.c 📝 r cg tmr.c 🧏 周辺機能 |
| 2 🕜 🙎   🗃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | ◎ フートを生成する   素 ☆ 次 座 🥑     | • * * • • • • • • • • • • • • • • • • •      |
| Isample4 (プロジェクト)     In (プロジェクト)     In (アリン・ション・     In (アリン・     In (アリン・ | ^          |                            |                                              |
| ■ R5F571MLCxFP (マイクロコントローラ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -カウント設定                    |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | クロックソース                    | PCLK V 60000 (kHz)                           |
| □ 22 周辺機能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 外部クロック端子TMCI1              | P12 V                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | カウンタクリア                    | コンペアマッチ Aによりクリア 🗸                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 外部リセット端子TMRIO              | P20 V                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          | コンペアマッチ Aの 値(TCORA)        | 1000 µs v (実際の値: 1000)                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          | ☐ S12AD A/D変換開始要求          |                                              |
| <b>⊡</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | コンペアマッチ Bの 値(TCORB)        | 20 µs (実際の値: 20)                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -TMO0出力設定<br>□ TMO0出力許可    |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            | P22                                          |
| ■ 🔮 マルチファンクションタイマパルスユニット3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | コンパアマッチム時の出力しパル            | <u>∽</u><br>変化(な()                           |
| → ポートアウトプットイネーブル3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | コンパアマッチ日時の出力レベル            | ☆(130000)<br>変化しない                           |
| ■ ~ 汎用PWM91 マ<br>■ 🔮 16ビットタイマパルスコニット                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                            | 2.130000                                     |
| ■ ■ プログラマブルパルスジェネレータ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | -割り込み設定                    | 司(CMIAO) 優先順位しびU45                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            | 可(CMIRO) 優先順位レベル5                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - TONITオーバフロー割り込みを許可)      |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                              |

「コード生成」で r \_ c g \_ t m r . c と r \_ c g \_ t m r \_ u s e r . c ファイルが新たに生成されま すが、 r \_ c g \_ t m e r . cの方は初期化設定=メインの初めに 1 回だけコールします、 r \_ c g \_ t m r \_ u s e r . cのほうにユーザーがプログラムを書き込むべき CM I A O 割り込み関数が生成されま す。

| <b>吃</b> 逆 | アセンブル 📑 プロ     | 1パティ 🥑      | rjogitmrjuser.c 🗹 rjogitmr.c 🖉 rjogitmr.c 두                               |
|------------|----------------|-------------|---------------------------------------------------------------------------|
| 50   1     | b)   🔿 🗠 🖍   力 | <u>54</u> • |                                                                           |
| 行          | # アドレス         | <b>1</b>    |                                                                           |
| 53         |                |             | ···/**********************************                                    |
| 54         |                |             | * Function Name: r_tmr_cmiaU_interrupt                                    |
| 55         |                |             | * Description : None                                                      |
| 55         |                |             | * Arguments : None                                                        |
| 5/         |                |             | * Keturn value : None                                                     |
| 00         |                |             |                                                                           |
| 09         |                |             | HIT FAST INTERRUPT VECTOR - VECTOR PERID INIBUS                           |
| 61         |                |             | [#pragma interrupt r_tmr_cmra0_interrupt(vect=vect(Perib, INTB128), Fint) |
| 62         |                |             | Herse interrupt r tmr omial interrupt(vect=VECT(DEDID_INTR120))           |
| 62         |                |             | (webt-vebt(rehtb))                                                        |
| 64         | ff-0128        | 2           | static void r tmr smial interrupt(void)                                   |
| 65         | 1100100.       | 4           |                                                                           |
| 66         |                |             | /* Start user code. Do not edit comment generated here */                 |
| 67         |                | -           |                                                                           |
| 68         | ffc0138        | f           | PORTC.PODR.BIT.BO = 1; //LED1 ON                                          |
| 70         | ffc0138        | 9           | <pre>if(int_timer != 0){int_timer;}</pre>                                 |
| /1         | CC 0100        |             |                                                                           |
| 72         | TTCU139        |             | PUKIC.PUUK.BII.BU = U; //LEUI UFF                                         |
| 74         |                |             |                                                                           |
| 75         |                |             | /* End user code. Do not edit comment generated here */                   |
| 76         |                |             |                                                                           |
|            |                |             |                                                                           |

r\_tmr\_cmia0\_interrupt割り込みの中でポートを立てて、抜け出す前に下ろしてい

ます。

この波形をオシロスコープで観測します。



TBS 1064 - 13:17:10 2015/08/11

細い筋が割込み周期です。ほぼ1msec毎になっています。また、1つの波形を時間軸を拡大すると



割り込みプログラムで50nsec×1.8 ≒ 90nsec程度の時間を消費していることが分かり ます。このポートがHでない部分がメインルーチンのプログラムが走っている時間です。

# c-5:既存のプログラムを雛形として新しいプログラムを作る

# 省略

⑤ t e s t \_ s a m p l e. c を削除。これで完成です。気になる方は、D e f a u l t B u i l d ホル ダの中の t e s t \_ s a m p l e ファイル群も削除して下さい。

| プロジェクト・ツリー           | 9 ×                 |
|----------------------|---------------------|
| 2 0 2 2              | _                   |
| ) 🖟 test_sample2 (プロ | コジェクト)*             |
| R5F521A8BxFP (       | マイクロコン              |
| - CC-RX (ビルド・        | ツー <mark>ル</mark> ) |
| RX E1(Serial) (5     | 「バッグ・ツー             |
| 占 🍱 ファイル             |                     |
| ↓ ビルド・ツール            | 生成ファイル              |
|                      |                     |
| - intprg.c           |                     |
|                      |                     |
| sbrk.c               |                     |
|                      | .c                  |
| test_sample.c        |                     |
|                      |                     |
| - 🔄 iodefine.h       |                     |
| - 🔄 sbrk.h           |                     |
| 📲 stacksct.h         |                     |
| 📲 typedefine.h       |                     |
| vect.h               |                     |

# c-6:コード生成と見落しがちな注意点

例えば、下記のように割り込み要求を変更し→「コードを生成する」で



全てのプログラムソースが上書きされるのですが、

| 出力                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M0409004:cg_src¥r_cg_sci.hを上書きしました。↓<br>M0409004:cg_src¥r_cg_s12ad.cを上書きしました。↓<br>M0409004:cg_src¥r_cg_s12ad_user.cを上書きしました。↓<br>M0409004:cg_src¥r_cg_s12ad.hを上書きしました。↓<br>M0409003:ファイルの生成を完了しました。↓<br>[EOF] |

# 省略

コード生成で変更したつもりになっていても、これを忘れると変わっていないので、ご注意下さい。

# 2. サンプルプログラム

サンプルプログラムは全てコンパイル、動作確認済みです。CN1にE1のケーブルを差し、「デバック ツールへ<sub>|</sub>プログラムをダウンロード」後

| 1 = = = = = = = = = = = = = = = = = = =            |
|----------------------------------------------------|
| <mark>デバッグ・ツール ヘプログラムをダウンロードします。</mark><br>/ 端子配置図 |
| CPUリセット後、実行で動作します。                                 |
| : 👦 🗅 🍋 🔘 💌 🚱 🕬   🖘 Çı 🛎   🔏                       |
| CPUリセット後、プログラムを実行します。                              |

電源はE1から供給しますので、新たに準備する必要はありません。

### sample1 ポートのON/OFF

#### 【 概要 】

出力可能な全ポートのON/OFFを繰り返します。PORTCのPCOに接続された基板上のLED D 1が点滅します。

#### 【周辺機能の説明】

サンプルプログラムは周辺機能→I/Oポート、ポートOからポートJまで出力可能なポートは全て出力 に設定し、「コード生成」してあります。この機能により、ユーザーはポートの初期設定を文章で記入す る必要が無く、「コード生成」で自動的に作成され、電源投入時、自動的に実行されます。

| ファイル(F) 編集(E) 表示(V) プロジェクト(P) ビルド(B) デバッグ(D) ツール(T) ウインドウ(W) ヘルプ(H)                                                                       |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 38 スタート(S) 😺 🗟 🕼 🖄 🕾 🖄 🕫 🔍 🔍 📾 🌉 🔍 🔹 100% 👻 🗑 🚱 DefaultBuild 🔹 🔦                                                                          |                        |
|                                                                                                                                           |                        |
|                                                                                                                                           |                        |
| プロジェクト・ツリー 🕴 🗶 端子配置表 🥤 r_og_main.c 📝 r_og_dbsct.c 🖄 プロパティ 冠 周辺機能 💋 端子配置                                                                   | Ø                      |
| 2 ② 2 図<br>- Fを生成する 点 Q 恋 性 学 編 品 品 詳 知 ③ ③ ③ ④ ③ ③ ③ ③ ③ ③ ③ ③ ③ ④ ③ ◎ ④ ◎ ④ ◎                                                           | <b>_ &amp; &amp; 7</b> |
| Port0 Port1 Port2 Port3 Port4 Port5 PortA PortB PortC PortD PortE Po                                                                      | rtJ                    |
| 回: 当 コード生成 (設計ツール) ○ 使用しない ○ 入力 ● 出力 □ 内蔵 プルアップ CMOS 出力 ▼ □                                                                               | ]1を出力                  |
| <ul> <li>● 2 クロック発生回路</li> <li>● 2 クロック発生回路</li> <li>● 使用しない ○ 入力</li> <li>● 出力</li> <li>● 内蔵ブルアップ</li> <li>CMOS 出力</li> <li>▼</li> </ul> | ]1を出力                  |
| ■ ● 電圧硬田回路<br>- ● クロック周波数構度測定回路<br>● 谐差響 1氏減増能<br>のほ                                                                                      | ]1を出力                  |
| ● 割り込みコントローラ<br>● 割し込みコントローラ<br>● ジバス = 0 使用しない ○ 入力 ● 出力 ○ 内蔵ブルアップ CMOS 出力 ▼                                                             | ]1を出力                  |
| ● ● DMAコントローラ<br>● データトランスファコントローラ<br>ロコ                                                                                                  | ]1を出力                  |
| - <sup>●</sup> イベントリンクコントローラ<br>● <sup>●</sup> //Oポート<br>● <sup>●</sup> マルチファンクションタイマパルスコーット3                                             | ]1を出力                  |

```
【 プログラム 】
```

### \*\*\*\*\*

```
Global variables and functions
```

```
*****
```

1/\* Start user code for global. Do not edit comment generated here \*/

```
②void main_wait(long ltime)
```

```
{
```

```
while(ltime != 0)
{
    ltime--;
}
```

```
}
```

```
/* End user code. Do not edit comment generated here */
```

```
void R_MAIN_UserInit(void);
```

```
*****
* Function Name: main
* Description : This function implements main function.
* Arguments
          : None
* Return Value : None
*****
void main(void)
{
  R MAIN UserInit();
   /* Start user code. Do not edit comment generated here */
3
   while (1U)
  {
      (4)
             PORT0.PODR.BYTE = 0x55;
             PORT1.PODR.BYTE = 0x55;
             PORT2.PODR.BYTE = 0x55;
             PORT3.PODR.BYTE = 0x55;
             PORT4.PODR.BYTE = 0x55;
             PORT5.PODR.BYTE = 0x55;
             PORT6.PODR.BYTE = 0x55;
             PORT7.PODR.BYTE = 0x55;
             PORT8.PODR.BYTE = 0x55;
             PORT9.PODR.BYTE = 0x55;
             PORTA.PODR.BYTE = 0x55;
             PORTB.PODR.BYTE = 0x55;
             PORTC.PODR.BYTE = 0x55;
```

|            | PORTD.PODR.BYTE = $0x55$ ; |
|------------|----------------------------|
|            | PORTE.PODR.BYTE = $0x55$ ; |
|            | PORTF.PODR.BYTE = $0x55$ ; |
|            | PORTJ.PODR.BYTE = $0x55$ ; |
|            |                            |
|            |                            |
| 5          | main_wait(5000000);        |
|            |                            |
|            |                            |
| 6          | PORT0.PODR.BYTE = 0xaa;    |
|            | PORT1.PODR.BYTE = 0xaa;    |
|            | PORT2.PODR.BYTE = 0xaa;    |
|            | PORT3.PODR.BYTE = 0xaa;    |
|            | PORT4.PODR.BYTE = 0xaa;    |
|            | PORT5.PODR.BYTE = 0xaa;    |
|            |                            |
|            | PORT6.PODR.BYTE = 0xaa;    |
|            | PORT7.PODR.BYTE = 0xaa;    |
|            | PORT8.PODR.BYTE = 0xaa;    |
|            | PORT9.PODR.BYTE = 0xaa;    |
|            | PORTA.PODR.BYTE = 0xaa;    |
|            | PORTB.PODR.BYTE = 0xaa;    |
|            | PORTC.PODR.BYTE = 0xaa;    |
|            | PORTD.PODR.BYTE = 0xaa;    |
|            | PORTE.PODR.BYTE = 0xaa;    |
|            | PORTF.PODR.BYTE = 0xaa;    |
|            | PORTJ.PODR.BYTE = 0xaa;    |
|            |                            |
| $\bigcirc$ | main_wait(5000000);        |
|            |                            |

/\* End user code. Do not edit comment generated here \*/ 【 解説 】

# 省略

}

②void main\_wait(long ltime)
{
 while(ltime != 0)
 {
 ltime--;
 }

}

LEDのON, OFFを人間の目で確認するためには時間の早すぎるON, OFFではだめで、数100 msecの時間(ウエイト)を作るためのプログラムです。

```
③ /* Start user code. Do not edit comment generated here */
while (1U)
{
```

プログラムは/\* Start user code. 以下に記入してください。

4

PORT0.PODR.BYTE = 0x55; PORT1.PODR.BYTE = 0x55; PORT2.PODR.BYTE = 0x55; PORT3.PODR.BYTE = 0x55; PORT4.PODR.BYTE = 0x55; ; PORTC.PODR.BYTE = 0x55;

| PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | P C 1 | PC0 |
|-----|-----|-----|-----|-----|-----|-------|-----|
| 0   | 1   | 0   | 1   | 0   | 1   | 0     | 1   |

(5) main\_wait(500000);

500000という数を減算して0になるまでの間、ポートが0×55に保たれます。LED D1も 点灯が保たれます。

- 6
- PORT0.PODR.BYTE = 0xaa; PORT1.PODR.BYTE = 0xaa; PORT2.PODR.BYTE = 0xaa; PORT3.PODR.BYTE = 0xaa; PORT4.PODR.BYTE = 0xaa; PORT5.PODR.BYTE = 0xaa;

0x55のビット反転数0xaaを出力しています。

Oxaa=10101010Bです。1ビット毎に1を立てています。PORTCのPCOに繋がれているLED D1もデータ'0'で電流が止まり、消灯します。

| -   |     | ÷   |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
| PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO |
| 1   | 0   | 1   | 0   | 1   | 0   | 1   | 0   |

0 x 5 5 と 0 x a a を交互に出す理由は、仮に隣のポートと接触しているとレベルの変化がありませんの で、例えばLEDが点滅しません。それによりハードウエアの異常が検出できます。(隣は必ず異なる論理 なので0, 1でも1, 0でも接触していると0になります。弊社出荷検査にて使用しています)

⑦ main\_wait(5000000);消灯している間も点灯同様に時間を保持しています。

### 2-2 sample2 SIO (USB) でパソコンとのやりとり

#### 【 概要 】

USB出力をパソコンと接続し、データのやり取りを行います。お手数ですが、テラタームやハイパータ ーミナルなどのターミナルプログラムを使用しますので、無い方は、ネットで検索し、インストゥール願 います。例ではテラタームで行います。ボーレートは9600bpsに設定して下さい。

USB-SIO絶縁変換器基板とCPUボードを接続します。USBケーブルでパソコンとつなげると、 USB基板側に電源が入ります。



スタート→右クリック→デバイスマネージャー → ポート(COMとLPT)でUSB Serial Port (COMxx)があることを確認して下さい (Windows10の場合)。例ではCOM4とな っています。



Tera Tremをシリアルポート COM4 →OKとします。

| Fera Term: 新しい          | 接続                                   | x      |
|-------------------------|--------------------------------------|--------|
| O TOP/IP                | ホスト(T) 192.168.11.21                 | ~      |
|                         | <ul> <li></li></ul>                  |        |
|                         | ●SSH SSHバージョン(V): SSH2               | $\sim$ |
|                         | ○その他 プロトコル(C): UNSP                  | EC Y   |
| <ul><li>●シリアル</li></ul> | ポート(R): COM4: USB Serial Port (COM4) | ~      |
|                         | OK キャンセル ヘルプ(H)                      |        |

#### 設定→シリアルポート→ボーレート9600として下さい。

| Tera Term: シリアルポート 設ち | Ē        |      | x       |
|-----------------------|----------|------|---------|
| ポート(P):               | COM4     | ~    | ОК      |
| ボー・レート(B):            | 9600     | ~    |         |
| データ(D):               | 8 bit    | ~    | キャンセル   |
| パリティ(A):              | none     | ~    |         |
| ストップ(S):              | 1 bit    | ~    | ヘルプ(H)  |
| フロー制御(F):             | none     | ~    |         |
| 送信遅延<br>0 ミリ利         | ♡/字(C) 0 | = =, | Ⅰ秒/行(L) |

CS+でsample2を開き、デバック・ツールヘプログラムダウンロード→CPUリセット後、プロ グラム実行。



USB Test、、 と表示され、PCのキーボードを何か押すたびに、押した文字が表示されると動作としてはOKです。

プログラムはパソコンのキーボードを押した文字がCPU基板に送信され、それを返信(エコーバック) し、表示されるようになっています。 【周辺機能の説明】



ここではSCI1を使用しています。青箱のふたが空いたように見える機能が使用されている機能です。

SCI1をクリック → 一般設定 調歩同期式、TXD1端子としてP16, RXD1端子としてP1 5が選択されています。

| 🚰 วีน/งริง | 🐴 逆アセンブル           | /1 🗹 r_o;     | g_sci    | .c 🗹 r_cg | _sci_us      | er.c | 🗹 r_o  | og_m | ain.c  | 2月 唐 | 辺相 | 機能 |   |
|------------|--------------------|---------------|----------|-----------|--------------|------|--------|------|--------|------|----|----|---|
| 🐻 コードを生    | 成する 👗 📋            | <i>🕷 </i> 🖾 🛙 | <b>1</b> | ) & &     | <b>t</b> \$0 | 3    | a 🐼    | Ø    | 0      | 00   | 0  |    | æ |
| SCI0 SCI1  | SCI2 SCI3          | SCI5 S        | CI6      | SCI12     |              |      |        |      |        |      |    |    |   |
| 一般設定(      | 设定                 | 90 O          |          |           |              |      |        |      |        |      |    |    |   |
| -機能設定 -    |                    |               |          |           |              |      |        |      |        |      |    |    |   |
| () 使用      | しない                |               |          |           |              |      |        |      |        |      |    |    |   |
| • 調歩       | 同期式                |               |          | 送信/受      | を信           |      | ~      |      |        |      |    |    |   |
| 〇 マルチ      | ·プロセッサモ <i>ー</i> ド |               |          | 送信        | 送信           |      |        |      |        |      |    |    |   |
| עםל 🔾      | り同期式 !             |               |          | 送信 🗸      |              |      |        |      |        |      |    |    |   |
| 0 22-      | トカードインタフ:          | 1 – J         |          | 送信        |              |      |        |      |        |      |    |    |   |
| () 簡易      | 120バス              |               |          |           |              |      |        |      |        |      |    |    |   |
| () 簡易      | SPIバス 👎            |               |          | スレーブ      | 送信/          | 受信   | $\sim$ |      |        |      |    |    |   |
| - 端子設定     |                    |               |          |           |              |      |        |      |        |      |    |    |   |
| TXD1       | P16                | · · · · ·     | -        | RXD1      | P15          |      |        |      | ~      |      |    |    |   |
| SSDA1      | P16                |               |          | SSCL1     | P15          |      |        |      | $\sim$ |      |    |    |   |
| SMOSI1     | P16                |               |          | SMIS O1   | P1 5         |      |        |      | $\sim$ |      |    |    |   |

ボーレートは9600bpsです。8ビットデータ、パリティなし、1ビットストップビット、ハードウ エアフロー制御なし。

| SCI0 SCI1 SCI2 SCI3 SCI5 SCI6 | SCI12                      |        |                                    |
|-------------------------------|----------------------------|--------|------------------------------------|
| 一般設定設定                        |                            |        |                                    |
| -スタートビット 検出設定                 |                            |        |                                    |
| ● RXD1 端子のLowレベル              | ─ RXD1 端子の立ち <sup>-</sup>  | 下がりエッシ | и<br>/                             |
| -データ・ビット 長設定                  |                            |        |                                    |
| ○ 9ピット                        | <ul> <li>๑ ยะีง</li> </ul> |        | ○ 7ビット                             |
| -パリティ設定                       | 0                          |        | ~                                  |
| ● パリティなし                      | ○ 偶数パリティ                   |        | ○ 奇数パリティ                           |
| - ストップビット 設定                  |                            |        |                                    |
|                               | 0 25%                      |        |                                    |
| - テーダ転送方回設定<br>● ISBファーフト     |                            |        |                                    |
|                               |                            |        |                                    |
| 転送りロック                        | 内部クロック                     | ~      |                                    |
| 基本クロック                        | 1ビット期間の16サイク               | 7.Jb 🗸 |                                    |
| ビットレート                        | 9600                       | ~      | (bps) (実際の値: 9615.385, エラー: 0.16%) |
| □ ビットレートモジュレーション機能有効          |                            |        |                                    |
| SCKI 端子機能                     | SCK1を使用しない                 | ~      | P17 🗸 🕐                            |
| - ノイズフィルタ設定                   |                            |        |                                    |
| □ノイズ除去機能を使用する                 |                            |        |                                    |
| ノイズフィルタクロック                   | 1分周のクロック                   | ~      | 60000000 (Hz)                      |
| -ハードウェアフロー制御設定                |                            |        |                                    |
| ● 禁止                          | 🔾 CTS 🙂                    |        | 🔘 rts 😲                            |
| CTS1/RTS1 端子                  | P1 4                       | $\sim$ |                                    |
| -データ処理設定                      |                            |        |                                    |
| 送信データ処理                       | 割り込みサービスルー                 | チンで処理  | 里する 🗸                              |
| 受信データ処理                       | 割り込みサービスルー                 | チンで処理  | ⊈र्वे ✓                            |
| - 割り込み 設定                     |                            |        |                                    |
| TXII 優先順位                     | レベル15                      | ~      |                                    |
| RXII 優先順位                     | レベル5                       | ~      |                                    |
| ✓ エラー割り込み許可(ERI1)             | 1                          |        |                                    |
| TEI1. ERI1 優先順位 (グループBLO)     | レベル15                      |        |                                    |

この条件で「コード生成」が行われ、以下の2つの関数が生成されています。



r \_\_ c g \_\_ s c i . c は電源投入時に自動的に実行される void R\_SCI1\_Create(void)関数と、ユーザーが使い初めに1回だけコールする void R\_SCI1\_Start(void)関数が自動生成されています。

# 省略

割込みコントローラも設定する必要があります。

# 省略

# 【 プログラム 】

#### void main(void)

{

R\_MAIN\_UserInit();

/\* Start user code. Do not edit comment generated here \*/

①R\_SCI1\_Start();

②R\_SCI1\_Serial\_Receive(rx\_data,1);
rx\_flg = 0;
tx\_end\_flg = 0;

PORTC.PODR.BIT.B0 = 0; //LED1 OFF ③R\_SCI1\_Serial\_Send(String\_0,37); //Opening message //送信終了待ち ④tx\_end\_wait(); while (1U) 5 { 6  $if(rx_flg == 1)$ { PORTC.PODR.BIT.B0 = 1; //LED1 ON  $rx_flg = 0;$ //受信フラグクリア  $\bigcirc$ R\_SCI1\_Serial\_Receive(rx\_data,1); //1文字受信 R\_SCI1\_Serial\_Send(rx\_data,1); //1文字送信 } }

【解説】

# 省略

2-3 sample3 A/D変換をUSB出力

#### 【 動作概要 】

AN000(P40 CN4 16番)、CPU内部温度、基準電圧を入力とし、A/D変換した値をUS Bからパソコンに送り、表示しています。

| SCOM4:9600baud - Tera Term VT                  | - | • | x |
|------------------------------------------------|---|---|---|
| ファイル(F) 編集(E) 設定(S) コントロール(O) ウインドウ(W) ヘルプ(H)  |   |   |   |
| AD0 = 2.996V TEMP = 117.86d STD_VOLT = 1.255 V |   |   | ~ |
| ADO = 2.996V TEMP = 116.88d STD_VOLT = 1.254 V |   |   |   |
| ADO = 2.985V TEMP = 117.86d STD_VOLT = 1.254 V |   |   |   |
| AD0 = 2.998V IEMP = 118.06d SID_VOLI = 1.254 V |   |   |   |
| ADO = 2.996V TEMP = 118.06d STD_VOLT = 1.252 V |   |   |   |
| ADO = 2.987V TEMP = 117.67d STD_VOLT = 1.252 V |   |   |   |
| ADO = 2.995V TEMP = 117.67d STD_VOLT = 1.252 V |   |   |   |
| ALU = 3.000V TEMP = 117.86d STD_VULT = 1.253 V |   |   |   |
| ADU = 2.987V TEMP = 117.86d STU_VULT = 1.254 V |   |   |   |
| ADU = 2.995V TEMP = 118.26d STD_VULT = 1.252 V |   |   |   |
| ADU = 3.001V TEMP = 117.67d STD_VULT = 1.252 V |   |   |   |
| ADU = 2.990V TEMP = 117.86d STU_VULT = 1.252 V |   |   |   |
| ADU = 2.995V TEMP = 117.67d STD_VULT = 1.252 V |   |   |   |
| ADU = 2.996V TEMP = 118.06d STD_VULT = 1.255 V |   |   |   |
| ADU = 2.987V TEMP = 118.45d STU_VULT = 1.252 V |   |   |   |
| ADU = 2.999V IEMP = 118.26d SID_VULI = 1.253 V |   |   |   |
| ADU = 3.000V TEMP = 118.65d STD_VULT = 1.253 V |   |   |   |
| ADU = 2.988V TEMP = 118.26d STU_VULT = 1.254 V |   |   |   |
| ADU = 2.996V TEMP = 118.400 STU_VULT = 1.203 V |   |   |   |
| ADU = 3.002V IEMM = 118.26d SIU_VULI = 1.253 V |   |   |   |
| ADU = 2.9960 IEMM = 118.200 SIU_VULI = 1.252 V |   |   |   |
| ADU = 2.3367 IEMM = 117.366 SIL_VULT = 1.252 V |   |   | = |
| ADU = 2.9967 IEMM = 118.268 SID_VULT = 1.255 V |   |   | - |
|                                                |   |   | ~ |

#### 【周辺機能の説明】

SCI1に加えて、12ビットA/Dコンバータを使用しています。



ANOOO入力のための設定です。S12ADOを選択しています。

省略

温度センサ、内部基準電圧を読み込むためのS12AD1の設定です。

省略

# 【 プログラム 】

| voi | d main(void)                                                |                        |                               |                       |  |  |  |  |  |
|-----|-------------------------------------------------------------|------------------------|-------------------------------|-----------------------|--|--|--|--|--|
| {   |                                                             |                        |                               |                       |  |  |  |  |  |
|     | R_MAIN_UserInit();                                          |                        |                               |                       |  |  |  |  |  |
|     | /* Start user code. Do not edit comment generated here */   |                        |                               |                       |  |  |  |  |  |
|     | R_SCI1_Start();                                             | //SCI1動                | 乍開始                           |                       |  |  |  |  |  |
| 1   | R S12AD0 Start();                                           | //AD0動作                | 乍開始                           |                       |  |  |  |  |  |
| 2   | R_S12AD1_Start();                                           | //AD1動作                | 乍開始                           |                       |  |  |  |  |  |
|     | R_SCI1_Serial_Receive(rx_<br>rx_flg = 0;<br>tx_end_flg = 0; | _data,1);              |                               |                       |  |  |  |  |  |
|     | PORTC.PODR.BIT.B0 = 0;                                      | i                      | //LED1 OFF                    |                       |  |  |  |  |  |
|     | R_SCI1_Serial_Send(String<br>tx_end_wait();                 | g_0,37);               | //Opening message<br>//送信終了まち |                       |  |  |  |  |  |
|     | while (1U)<br>{                                             |                        |                               |                       |  |  |  |  |  |
| 3   | S12AD.ADCSR<br>S12AD1.ADCS                                  | .BIT.ADST<br>R.BIT.ADS | T = 1;<br>T = 1;              | //ADスタート<br>//AD1スタート |  |  |  |  |  |
| 4   | while(S12AD.A                                               | DCSR.BIT.              | ADST)                         |                       |  |  |  |  |  |

ad0 = S12AD.ADDR0; //AD値

;

| 8  | fdata3 = stvolt/(4095/3.3);                            | //データ→電圧捜                   | 與算 type1.25V 1.20~1.30V  |
|----|--------------------------------------------------------|-----------------------------|--------------------------|
| 9  | <pre>sprintf(tx_buffer,"AD0 = %.3fV TEMP = %.2fd</pre> | $STD_VOLT = \%.3 f V = n r$ | ",fdata1,fdata2,fdata3); |
| 10 | R_SCI1_Serial_Send(tx_buffer,sized                     | f(tx_buffer)); //デー         | タをUSB出力                  |
|    | tx_end_wait();                                         | //送信終了まち                    |                          |

| PORTC.PODR.BIT.B0 = 1; | //LED1 ON  |
|------------------------|------------|
| main_wait(1000000);    |            |
| PORTC.PODR.BIT.B0 = 0; | //LED1 OFF |
| main_wait(1000000);    |            |

# 【解説】

}



| ウォッチ1             |                |
|-------------------|----------------|
| 🕘   🌒   🛃 🖏 🗙   🕯 | 表記(N)▼ 🔤       |
| ウォッチ式             | 値              |
| 📷 SCI1.SSR        | 0x84           |
| 🗉 🔍 rx_data       |                |
| 😜 ad0             | 124 (0x007c)   |
| 🔍 templ           | 1567 (0x061f)  |
| 😜 stvolt          | 1557 (0x0615)  |
| 🖃 🔍 tx_buffer     | "ADO = 0.100V… |
| € [0]             | 'A' (0x41)     |
| 😜 [1]             | 'D' (0x44)     |
| 😜 [2]             | '0' (0x30)     |
| 😜 [3]             | ''(0x20)       |
| 😜 [4]             | '=' (0x3d)     |
| 😜 [5]             | ''(0x20)       |
| 😜 [6]             | '0' (0x30)     |
| 😜 [7]             | '.' (Ox2e)     |
| 😜 [8]             | '1' (0x31)     |
| 😜 [9]             | '0' (0x30)     |
| 😜 [10]            | '0' (0x30)     |
| 😜 [11]            | 'V' (0x56)     |
| 😜 [12]            | ''(0x20)       |
| 😜 [13]            | 'T' (0x54)     |
| 😜 [14]            | 'E' (0x45)     |
| 👻 [15]            | 'M' (0x4d)     |
| 😜 [16]            | 'P' (0x50)     |
| 😺 [17]            | ''(0x20)       |
| 😜 [18]            | '=' (0x3d)     |

## 2-4 sample4 割り込み

#### 【 動作概要 】

sample4を動作させます。ここでは定周期割り込みについてサンプルを示します。sample3のループ時間を割込みを使って正確に1秒とし、データを出力しています。新たに経過秒を示しています。

| ファイル(F) 編集(F) 影                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 設定(5) コントロール(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | บ่∡่นหี่บ่เพ่า ∧แป้(เ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1)                                                                                                                                                                  | / |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ファイル(F)         編集(E)         数           /0         Test         Beyond the           00         = 0.082V         TEMP =           00         = 0.082V         TEMP =           00         = 0.087V         TEMP =           00         = 0.081V         TEMP =           00         = 0.087V         TEMP =           00         = 0.082V         TEMP = | 酸定(S) コントロール(O)       P river 2016.9     = 31.78d STD_VOLT     = 32.95d STD_VOLT     = 32.95d STD_VOLT     = 33.15d STD_VOLT     = 33.35d STD_VOLT     = 33.35d STD_VOLT     = 33.55d STD_VOLT     = 33.54d STD_VOLT     = 33.74d STD_VOLT     = 33.94d STD_VOLT     = 34.13d STD_VOLT     = 34.13d STD_VOLT     = 34.13d STD_VOLT     = 33.74d STD_VOLT     = 34.13d STD_VOLT     = 34.74d STD | ウインドウ(W) ヘルプ(H<br>= 1.263 V Timer =<br>= 1.262 V Timer =<br>= 1.262 V Timer =<br>= 1.262 V Timer =<br>= 1.263 V Timer =<br>= 1.263 V Timer =<br>= 1.264 V Timer =<br>= 1.264 V Timer =<br>= 1.262 V Timer =<br>= 1.262 V Timer =<br>= 1.262 V Timer =<br>= 1.261 V Timer =<br>= 1.264 V Timer =<br>= 1.261 V Timer =<br>= 1.263 V Timer =<br>= 1.263 V Timer =<br>= 1.263 V Timer =<br>= 1.264 V Timer =<br>= 1.264 V Timer =<br>= 1.264 V Timer =<br>= 1.263 V Timer =<br>= 1.264 V Time | 4)       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19 |   |

オシロスコープがあれば PC0 CN6 20番を観測すると、以下のような1msec毎の波形が観測 できます。



【周辺機能の説明】

| s a m p Ⅰ e 3 で使用している周辺機能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | に加えて、8ビットタイマ              | 7 TMR0を使って、                        | 1msec 定                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--------------------------|
| 周期割り込みを実現させています。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                         |                                    | /                        |
| 🔯 sample4 - RX E1(Serial) - CS+ for CC - [プロジェクト・ツリー]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                    |                          |
| ファイル(F) 編集(E) 表示(V) プロジェクト(P) ビルド(B) デパッグ(D) ツ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ール(T) ウインドウ(W) ヘルプ(H)     | /                                  | ,                        |
| 🚳 スタート(S) 退 🖩 🗿 🐰 🐚 🛍 🔊 唑 🖁 🐥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 🕶 🛛 100% 👻 🗖 🐻 Default    | uild 🕘 🐁 😽 🛛                       | 🖲 🕞 🕞 🔭 🎯 🖘 Çe           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                    |                          |
| プロジェクト・ツリー 🛛 🕈 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 「 逆アセンブル1 プラロパティ Mrcgtm   | ruser.c 🏹 r.cg main.c 🏹 r.g tmr.c. | 🍸 r. cg. sci user.c 🧏 周辺 |
| 2 🞯 🙎   🗷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                    | <u></u>                  |
| - R5F571MLCxFP (マイクロコントローラ) ヘ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                    |                          |
| □ 1−ド生成 (設計ツ−ル)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 2                                  |                          |
| ▲ / 端子図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>7</b>                  | PCLK                               | ▼ 60000 (kHz)            |
| □ 2000 mm 0 20000 mm 0 2000 mm 0 20000 mm 0 200000 mm 0 200000 mm 0 200000000 | 外部クロック端子TMCII             | P12 V                              |                          |
| ■ 🔮 電圧検出回路                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | カウンタクリア                   | コンペアマッチ Acよりクリア                    | ~                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 外部リヤット端子TMRIO             | P20                                |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | コンペアマッチ Aの 値(TCORA)       | 1000 us v (東                       | 上際の値:1000)               |
| ● 割り込みコントローフ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ S12AD A/D変換開始要求         |                                    |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u> いいの い し ((ICORB) | 20 us (1                           | 際の値:20)                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | μο (3                              | (MO) 12. 207             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -TMOO出力設定                 |                                    |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L TMOO出力許可                |                                    |                          |
| ■ マイルノファンションショイマハルスユニット3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TMOO認子                    | P22 V                              |                          |
| ■ ● 汎用PWMタイマ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | コンペアマッチA時の出力レベル           | 変化しない                              | ×                        |
| в € 16ビットタイマパルスユエット                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | コンペアマッチB時の出力レベル           | 変化しない                              | × .                      |
| □ □ ブログラマブルパルスジェネレータ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 割り込み設定                  |                                    |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ✓ TCORAコンペアマッチ割り込みを許可     | (CMIAO) 優先順位レベル15                  | ~                        |
| - TMR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | □ TCORBコンペアマッチ割り込みを許可     | (CMIBO) 優先順位 レベル15                 | Y                        |
| <sup>©</sup> TMR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □ TCNTオーパフロー割り込みを許可(C     | MO) 優先順位レベル15                      | Y                        |
| TMR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                    |                          |

「コード生成」で r\_cg\_tmer.c r\_cg\_tmer\_user.c

2つのプログラムが自動作成されます。

## 【 プログラム 】

sample3と比べて変わった所だけ書きます。

void main(void)

{

```
R_MAIN_UserInit();
```

/\* Start user code. Do not edit comment generated here \*/

```
R_SCI1_Start(); //SIO初期化
```

| R_S12AD0_Start(); | //AD初期化 |
|-------------------|---------|
| R_S12AD1_Start(); | //AD初期化 |

① R\_TMR0\_Start(); //8 ビットタイマー初期化

;

```
r_cg_tmer_user.c の割り込みの部分
```

static void r\_tmr\_cmia0\_interrupt(void)

{

/\* Start user code. Do not edit comment generated here \*/

(5) **PORTC.PODR.BIT.B0 = 1;** //LED1 ON

```
6 if(int_timer != 0){int_timer--;}
```

PORTC.PODR.BIT.B0 = 0; //LED1 OFF

/\* End user code. Do not edit comment generated here \*/

}

## 【解説】

# 省略

このように、割り込みで時間を作り、メインで使用すれば、極めて正確なタイマーが多数作成可能です。 定周期割り込みはその中に様々なプログラムを作成することも可能で、機能的なプログラム作成に不可欠 な知識、要素です。

## 2ー5 sample5 PWM出力 【 動作 】

汎用PWMタイマを使って、PWM波形を作ります。GTIOCOA端子 P23 CN5 20番、G TIOCOB端子 P17 CN5 16番に出力されます。



PWM波形は上図のように、周期が変わらず、設定値によってH、Lの幅の比率が変化します。この出力でLEDやモーターをドライブすると明るさや速度を変えることが出来るので、現代では様々な用途に使われています。

#### 【周辺機能の説明】

汎用PWMタイマ→GPTOでタイマ周期レジスタを10µsecに設定。f(周波数)=1/周期で 周波数は100KHzとなります。周期レジスタ(GTPRO)の値が自動的に599になります。一般 的に変化の応答を早くしたいときは周期を短くし、分解能を重視したいときは周期を長くします。

# 省略

コンペアマッチレジスタGTCCRAに書く値を0~599まで変えることによりPWMの幅が変ります。 初期値として99をセットしています。PWM出力端子をP23, P17に設定しています。

| 🚰 プロパティ 🐁 逆アセンブル1 🥑 r_c | sg_main.c 📝 r_cg_gpt.c 🧏 周辺機能 |       |             |
|-------------------------|-------------------------------|-------|-------------|
| 🔞 コードを生成する   🍒 🔒 🕷 😤    | e 🛛 🕹 🕹 😂 💷 🕲 🔍 🕲 🖉           | 1 🔿 Ø | 🌼 🔲 🔗 🔗 🍼 🍼 |
| -コンペアマッチレジスタGTCCRA、GTIC | DCOA端子設定                      |       |             |
| GTCCRA機能                | コンペアマッチ                       | ~     | ]           |
| コンペアマッチ 値 (GTCCRA)      | 99                            |       |             |
| バッファ動作                  | バッファ動作しない                     | ¥     |             |
| GTIOCOA端子機能             | PWM出力端子                       | ~     | P23 (B) 🗸   |
| 🗌 ノイズフィルタ               | PCLKA                         | ~     |             |
| 開始/停止時の出力レベル            | 開始時0出力、停止時0出力                 | ~     | ]           |
| コンペアマッチ時の出力レベル          | 0出力                           | ~     | ]           |
| 周期の終わり時の出力レベル           | 1出力                           | ~     | ]           |
| -コンペアマッチレジスなGICCRB GIIC | COB端子設定                       |       |             |
| GTCCRB機能                | コンペアマッチ                       | ~     |             |
| コンペアマッチ 値 (GTCCRB)      | 100                           |       | <i>.</i>    |
| バッファ動作                  | パッファ 動作しない                    | ~     |             |
| GTIOC0B端子機能             | PWM出力端子                       | ~     | P17 (B) 🗸   |
| 🗌 ノイズフィルタ               | PCLKA                         | ~     |             |
| 開始/停止時の出力レベル            | 開始時0出力、停止時0出力                 | ~     |             |
| コンペアマッチ時の出力レベル          | 0出力                           | ~     | ]           |
| 周期の終わり時の出力レベル           | 1出力                           | ~     | ]           |

なおP17, P23は周辺機器→I/Oポート→(I/Oとしては)使用しない を選択する必要があり ます。

| 📓 r_cg_main.c 🔛 ブロバテイ  | ☑ 端子郎       | 置表 gr_og.gpt.c gg端子配置図 加速 间辺機能                        |
|------------------------|-------------|-------------------------------------------------------|
| 🐻 コードを生成する   👗 🗋       | a 🖄 🕷       | ■ ♣ ♣ 苯 💴 ⑧ ④ ◎ ◎ ④ ④ ⑨ ◎ 의 용 용 중 중 백 중 ଅ 🍕 🦄         |
| Port0 Port1 Port2 Port | 3 Port4 F   | Port5   PortA   PortB   PortC   PortD   PortE   PortJ |
| -P20                   | ~           |                                                       |
| ● 使用しない ○ 入力           | ● 出力        | □ 内蔵ブルアップ CMOS 出力 · 1を出力 · 高駆動出力                      |
| - P21                  |             |                                                       |
| ○ 使用しない ○ 入力           | • 出力        | 内蔵ブルアップ CMOS 出力 🔹 🔽 1を出力 🗸 高駆動出力                      |
| - P22                  |             |                                                       |
|                        | <b>●</b> 出力 | □ 内蔵グルアップ CMOS 出力 V □ 1を出力 Z 高駆動出力                    |
|                        | Сшл         |                                                       |
| -P23                   |             |                                                       |
| ● 使用しない ○ 人力 🤇         | • 〇 出刀 (    | ■ 内蔵JルアップCMUS出力 V 「1を出力」高駆動出力                         |
| - P24                  |             | 以下の端子と競合しています。この機能を使用する場合は競合する機能の設定を無効にしてください。        |
| 🔹 🔘 使用しない 🗋 入力         | ◉ 出力        | P23はGTIOCOAで使われています。                                  |
| - P25                  |             |                                                       |
| ○ 使用しない ○ 入力           | ① 出力        | □ 内蔵グルアップ CMOS 出力 V 1を出力 S駆動出力                        |
| D06                    | <u> </u>    |                                                       |
|                        | <u>а</u> ш+ |                                                       |
|                        | ●五月         |                                                       |
| -P27                   | ~           |                                                       |
| ● 使用しない ● 入力           | • 出力        | 内蔵ブルアップ CMOS 出力                                       |
|                        |             |                                                       |

# 【 プログラム 】

void main(void)

{

R\_MAIN\_UserInit();

/\* Start user code. Do not edit comment generated here \*/

 R\_SCI1\_Start();
 //SCI1スタート

 ①
 R\_GPT0\_Start();
 //汎用PWMタイマースタート

R\_SCI1\_Serial\_Receive(rx\_data,1); rx\_flg = 0; tx\_end\_flg = 0;

```
PORTC.PODR.BIT.B0 = 0;
```

//LED1 OFF

R\_SCI1\_Serial\_Send(String\_0,37);
tx\_end\_wait();

//Opening message //送信終了待ち

| 2   | while (1U) |                    |
|-----|------------|--------------------|
|     | {          |                    |
|     | if(GPT0.C  | GTCCRA != 599)     |
|     | {          |                    |
| 3   |            | GPT0.GTCCRA++;     |
|     | }          |                    |
|     | else       |                    |
|     | {          |                    |
| 4   |            | GPT0.GTCCRA = 0;   |
|     | }          |                    |
|     |            |                    |
|     | if(GPT0.C  | FTCCRB = 0         |
|     | {          |                    |
| 5   |            | GPT0.GTCCRB;       |
|     | }          |                    |
|     | else       |                    |
|     | {          |                    |
| 6   |            | GPT0.GTCCRB = 599; |
|     | }          |                    |
| ~   |            |                    |
| (7) | main_wai   | t(100000);         |
|     | <u>`</u>   |                    |
|     | }          |                    |

/\* End user code. Do not edit comment generated here \*/
}

【 解説 】



従来のRXのイニシャルプログラム作成時はレジスタライトプロテクション有効、解除の頻繁な書き込み が必要でしたし、PWMを使うためのレジスタの詳細を掴んでからでないとプログラムが作成できません でしたが、このようにRL78と全く同じようにRXマイコンの開発が行える環境がそろいました。

# 2-6 三角、対数、平方根関数を使う

## 【 概要 】

| og、sin、√ 演算を行い、演算結果の確認とその速度を測定します。

### 【周辺機能の説明】

CS+側の設定はc-3↓をご参照ください。

c-3:三角関数math.hはインクルードもCS+の設定も必要

# 【 プログラム 】

) ()#include <math.h>

②double d1,d2,d3;
③short s1,s2,s3;

(4)#define PI 3.14159265

;

#### void main(void)

{

# R\_MAIN\_UserInit(); /\* Start user code. Do not edit comment generated here \*/

#### //重複省略

| 5  | PORTC.PODR.BIT.B0 = 1; | //時間マーカーON  |
|----|------------------------|-------------|
| 6  | d1 = log10(10000);     |             |
| 7  | PORTC.PODR.BIT.B0 = 0; | //時間マーカーOFF |
| 8  | d2 = sin((PI/180)*45); |             |
|    | PORTC.PODR.BIT.B0 = 1; | //時間マーカーON  |
| 9  | d3 = sqrt(2);          |             |
|    | PORTC.PODR.BIT.B0 = 0; | //時間マーカーOFF |
| 10 | s1 = d1;               |             |
|    | s2 = d2;               |             |
|    | s3 = d3;               |             |





32ビット浮動小数点データを16ビット整数にキャストしています。それぞれ、4,0,1となるはずです。例えば演算結果をDAコンバータに出力する場合、浮動小数点のままでは設定できません。小数点以下何桁まで使用したいかに応じて、doubleデータを加工してからshortに移せば最大の精度、 有効数値を得ることが出来ます。

| 74971        |               |                |            |    | * * |
|--------------|---------------|----------------|------------|----|-----|
| 🗷   🍭 🤽 🎒 🗙  | 表記(N)▼        |                |            |    |     |
| ウォッチ式        | 値             | 型情報(バイト数)      | アドレス       | ×т |     |
| 🔍 tx_end_flg | '' (0x00)     | uint8_t(1)     | 0x0000002d |    |     |
| 👻 rx_flg     | '' (0x00)     | uint8_t (1)    | 0x0000002c |    |     |
| 🖽 😔 rx_data  |               | unsigned char… | 0x00000004 |    |     |
| 📷 SCI1.SCR   | 0x50          | IOR(1)         | 0x0008a022 |    |     |
| 📷 SCI1.SSR   | 0x84          | IOR(1)         | 0x0008a024 |    |     |
| 😜 d 1        | 4.000000E+000 | float (4)      | 0×00000460 |    |     |
| 😔 d2         | 7.071068E-001 | float (4)      | 0×00000464 |    |     |
| 😜 d3         | 1.414214E+000 | float (4)      | 0x00000468 |    |     |
| 😜 s1         | 4 (0x0004)    | short(2)       | 0x00000054 |    |     |
| 😜 s2         | 0 (0x0000)    | short (2)      | 0×00000056 |    |     |
| 😜 s3         | 1 (0x0001)    | short (2)      | 0x00000058 |    |     |

演算結果はそれぞれd1、d2、d3に入ります。正しいですね。

演算速度ですが、 | og 10(10000)が約550nsec、sin(45°)が350nsec、√ 2が100nsec程度かかるようでした。



TBS 1064 - 17:41:37 2016/09/29

例えばRL78(32MHz)では約220 $\mu$ sec、sin(45°)が130 $\mu$ sec、 $\sqrt{2}$ が100  $\mu$ sec程度ですので、それぞれ400倍、371倍、1000倍も速いことになります。マイコンに必 要な能力が演算処理速度の場合、RXを使用するのが圧倒的に有利であることが分かります。RX21A がRX71M、RX630に比べて遅いのはFPU内蔵、非内蔵の差と思われます。

| or omgræden |           |          |          |                   |  |
|-------------|-----------|----------|----------|-------------------|--|
| CPU クロッ     | ク         | log      | sin      | $\checkmark$      |  |
| RX71M 2     | 4 0 M H z | 550nsec  | 350nsec  | 100nsec           |  |
| RX630 1     | 0 0 M H z | 1. 8µsec | 800nsec  | 1. 2 <i>µ</i> sec |  |
| R X 2 1 A   | 5 0 M H z | ЗЗµѕес   | 2. 5µsec | Зμѕес             |  |
| RL78        | 3 2 M H z | 220µsec  | 130µsec  | 1000 <i>µ</i> sec |  |

CPU別演算速度例

2-7 D/Aにsin演算した正弦波を出力する

#### 【 概要 】

RX71Mがもつ、1ch 12ビットD/Aにsin演算結果(最大±1)を0-3.3Vに変換し出 カします。正弦波オシレーターになります。



【周辺機能の説明】

D/Aコンバータの設定は以下の通りです。

【 プログラム 】

```
①unsigned short sin_data[370],kakudo;
;
void main(void)
£
②//演算して結果をメモリにセーブ
                 for(kakudo = 0;kakudo < 360 ;kakudo++)</pre>
                 {
                         d2 = sin((PI/180)*kakudo);
                                                   //1から-1まで変動
                         d2 +=1;
                                                   //オフセット+1→ 0~2の変化になる
                         d2 *= 2047.5;
                                                   //2を最大電圧3.3Vにする。
                                                   //sin信号をDAOUT P05
                         sin_data[kakudo] = d2;
                 }
③//演算結果をD/Aに出力
```

```
PORTC.PODR.BIT.B0 = 1; //LED1 ON
for(kakudo = 0;kakudo < 360 ;kakudo++)
{
DA.DADR1 = sin_data[kakudo]; //sin信号をDAOUT P03
}
PORTC.PODR.BIT.B0 = 0; //LED1 OFF
```

}

【解説】

省略

格納された配列のデータを1個ずつ読み込んでD/Aに出力しています。この方式で82KHz程度の正 弦波が作成できています。人間の可聴帯域程度であれば十分使用可能です。

それぞれはそれぞれの会社の登録商標です。

1. 本文章に記載された内容は弊社有限会社ビーリバーエレクトロニクスの調査結果です。

2. 本文章に記載された情報の内容、使用結果に対して弊社はいかなる責任も負いません。

3. 本文章に記載された情報に誤記等問題がありましたらご一報いただけますと幸いです。

4. 本文章は許可なく転載、複製することを堅くお断りいたします。

#### お問い合わせ先:

〒350-1213 埼玉県日高市高萩1141-1
TEL 042 (985) 6982
FAX 042 (985) 6720
Homepage: http://beriver.co.jp
e-mail: info@beriver.co.jp
有限会社ビーリバーエレクトロニクス (Beyond the river Inc. 20160930)